Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Vet Pathol ; 59(5): 773-781, 2022 09.
Article in English | MEDLINE | ID: mdl-35656928

ABSTRACT

Trypanosomosis of the West African Dwarf (WAD) sheep is often neglected due to emphasis on trypanotolerance. Nevertheless, significant pathological changes may occur in tissues of infected WAD sheep. The purpose of this study was to evaluate the brain, pituitary, and adrenal lesions of Trypanosoma brucei brucei (Tbb) and Trypanosoma congolense (Tc) infections in WAD rams. Fifteen WAD rams were infected intraperitoneally with Tbb or Tc (106 trypanosomes/animal) or were uninfected controls (5 rams per group). Adrenocorticotrophic hormone (ACTH) and cortisol were assayed in serum by enzyme immunoassay technique. The brain, pituitary, and adrenal glands were processed for histopathology. Serum ACTH levels of infected rams were significantly (P < .05) higher than that of controls on days 14 and 70 post infection (PI). Serum cortisol levels of infected rams were significantly (P < .05) higher than that of controls only on day 14 PI. Mortality was 60% in Tbb- and 40% in Tc-infected rams. The brain of the infected groups showed chromatolysis of cortical neurons and Purkinje cells with severe encephalitis. Degenerative, necrotic, and inflammatory changes were seen in the pituitary and adrenal glands of the infected rams. Adrenal corticomedullary ratio was significantly (P < .05) higher in Tc-infected rams than controls. Based on the high mortality levels, likely due to severe encephalitis, the WAD sheep may not be regarded as trypanotolerant.


Subject(s)
Encephalitis , Pituitary Diseases , Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosomiasis, African , Adrenocorticotropic Hormone , Animals , Encephalitis/veterinary , Hydrocortisone , Male , Pituitary Diseases/veterinary , Pituitary Gland , Sheep , Sheep, Domestic , Trypanosoma congolense/physiology , Trypanosomiasis, African/veterinary
2.
PLoS Negl Trop Dis ; 15(12): e0010036, 2021 12.
Article in English | MEDLINE | ID: mdl-34937054

ABSTRACT

BACKGROUND: The existence of an animal reservoir of Trypanosoma brucei gambiense (T. b. gambiense), the agent of human African trypanosomiasis (HAT), may compromise the interruption of transmission targeted by World Health Organization. The aim of this study was to investigate the presence of trypanosomes in pigs and people in the Vavoua HAT historical focus where cases were still diagnosed in the early 2010's. METHODS: For the human survey, we used the CATT, mini-anion exchange centrifugation technique and immune trypanolysis tests. For the animal survey, the buffy coat technique was also used as well as the PCR using Trypanosoma species specific, including the T. b. gambiense TgsGP detection using single round and nested PCRs, performed from animal blood samples and from strains isolated from subjects positive for parasitological investigations. RESULTS: No HAT cases were detected among 345 people tested. A total of 167 pigs were investigated. Free-ranging pigs appeared significantly more infected than pigs in pen. Over 70% of free-ranging pigs were positive for CATT and parasitological investigations and 27-43% were positive to trypanolysis depending on the antigen used. T. brucei was the most prevalent species (57%) followed by T. congolense (24%). Blood sample extracted DNA of T. brucei positive subjects were negative to single round TgsGP PCR. However, 1/22 and 6/22 isolated strains were positive with single round and nested TgsGP PCRs, respectively. DISCUSSION: Free-ranging pigs were identified as a multi-reservoir of T. brucei and/or T. congolense with mixed infections of different strains. This trypanosome diversity hinders the easy and direct detection of T. b. gambiense. We highlight the lack of tools to prove or exclude with certainty the presence of T. b. gambiense. This study once more highlights the need of technical improvements to explore the role of animals in the epidemiology of HAT.


Subject(s)
Disease Reservoirs/parasitology , Swine Diseases/parasitology , Trypanosoma brucei gambiense/isolation & purification , Trypanosoma congolense/isolation & purification , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Animals , Animals, Domestic/parasitology , Cote d'Ivoire/epidemiology , Humans , Polymerase Chain Reaction , Swine , Swine Diseases/epidemiology , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/physiology , Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Trypanosomiasis, African/epidemiology
3.
J Immunol ; 207(5): 1401-1410, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34380646

ABSTRACT

PI3Kδ is critical in generating humoral and regulatory immune responses. In this study, we determined the impact of PI3Kδ in immunity to Trypanosoma congolense, an African trypanosome that can manipulate and evade Ab responses critical for protection. Upon infection with T. congolense, PI3KδD910A mice lacking PI3Kδ activity paradoxically show a transient enhancement in early control of parasitemia, associated with impaired production of regulatory IL-10 by B cells in the peritoneum. C57BL/6 wild-type (WT) mice treated with the PI3Kδ inhibitor (PI3Kδi) Idelalisib showed a similar transient decrease in parasitemia associated with reduced IL-10. Strikingly, however, we find that PI3KδD910A mice were ultimately unable to control this infection, resulting in uncontrolled parasitemia and death within 2 wk. Assessment of humoral responses revealed delayed B cell activation, impaired germinal center responses, and compromised Ab responses to differing degrees in PI3KδD910A and PI3Kδi-treated mice. To test the role of Abs, we administered serum from WT mice to PI3KδD910A mice and found that lethality was prevented by postinfection serum. Interestingly, serum from naive WT mice provided partial protection to PI3KδD910A mutants, indicating an additional role for natural Abs. Together our findings suggest that although PI3Kδ drives immune regulatory responses that antagonize early control of parasite growth in the peritoneum, it is also required for generation of Abs that are critical for protection from systemic trypanosome infection. The essential role of PI3Kδ for host survival of African trypanosome infection contrasts with findings for other pathogens such as Leishmania, underlining the critical importance of PI3Kδ-dependent humoral immunity in this disease.


Subject(s)
B-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/metabolism , Trypanosoma congolense/physiology , Trypanosomiasis, African/immunology , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Immunity, Humoral , Immunomodulation , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Parasitemia
4.
Infect Genet Evol ; 90: 104763, 2021 06.
Article in English | MEDLINE | ID: mdl-33571685

ABSTRACT

The purpose of this study was to investigate factors involved in vector competence by analyzing whether the diversity and relative abundance of the different bacterial genera inhabiting the fly's gut could be associated with its trypanosome infection status. This was investigated on 160 randomly selected G. p. palpalis flies - 80 trypanosome-infected, 80 uninfected - collected in 5 villages of the Campo trypanosomiasis focus in South Cameroon. Trypanosome species were identified using specific primers, and the V4 region of the 16S rRNA gene of bacteria was targeted for metabarcoding analysis in order to identify the bacteria and determine microbiome composition. A total of 261 bacterial genera were identified of which only 114 crossed two barriers: a threshold of 0.01% relative abundance and the presence at least in 5 flies. The secondary symbiont Sodalis glossinidius was identified in 50% of the flies but it was not considered since its relative abundance was much lower than the 0.01% relative abundance threshold. The primary symbiont Wigglesworthia displayed 87% relative abundance, the remaining 13% were prominently constituted by the genera Spiroplasma, Tediphilus, Acinetobacter and Pseudomonas. Despite a large diversity in bacterial genera and in their abundance observed in micobiome composition, the statistical analyzes of the 160 tsetse flies showed an association with flies' infection status and the sampling sites. Furthermore, tsetse flies harboring Trypanosoma congolense Savanah type displayed a different composition of bacterial flora compared to uninfected flies. In addition, our study revealed that 36 bacterial genera were present only in uninfected flies, which could therefore suggest a possible involvement in flies' refractoriness; with the exception of Cupriavidus, they were however of low relative abundance. Some genera, including Acinetobacter, Cutibacterium, Pseudomonas and Tepidiphilus, although present both in infected and uninfected flies, were found to be associated with uninfected status of tsetse flies. Hence their effective role deserves to be further evaluated in order to determine whether some of them could become targets for tsetse control of fly vector competence and consequently for the control of the disease. Finally, when comparing the bacterial genera identified in tsetse flies collected during 4 epidemiological surveys, 39 genera were found to be common to flies from at least 2 sampling campaigns.


Subject(s)
Bacteria/isolation & purification , Insect Vectors , Microbiota , Trypanosoma congolense/physiology , Trypanosomiasis, African/parasitology , Tsetse Flies , Animals , Bacteria/classification , Bacterial Physiological Phenomena , Cameroon , Insect Vectors/microbiology , Insect Vectors/parasitology , Tsetse Flies/microbiology , Tsetse Flies/parasitology
5.
Trop Anim Health Prod ; 53(1): 25, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33219890

ABSTRACT

Consistent quantification of trypanosomes, the parasite responsible for African animal trypanosomosis, is important for effective surveillance, control, and eradication strategies. Here, we used a rigorously predefined protocol to search and select eligible publications that utilized either microscopy, serology, or molecular methods to investigate prevalence of trypanosomosis based on the presence of any of three most common Trypanosoma spp. (T. congolense, T. vivax, and T. brucei) in the field-based naturally grazed Gambian cattle, sheep, and goats. To combine results of studies on cattle through meta-analysis, sensitivity and subgroup analyses were carried out with the random effects model, and prevalence estimates of each study with 95% confidence intervals (CI) were presented with a forest plot. All the eligible studies utilized the buffy coat technique (BCT) to detect trypanosomes in the blood samples, while the more sensitive serological and molecular detection methods are yet to be widely exploited. Heterogeneity among the studies on cattle was moderate (I2 = 55%), and the pooled trypanosomosis prevalence based on the BCT was 5.2% (95% CI: 4.0-6.4). Meanwhile, estimated prevalence varied according to the trypanosome detection methods, study locations, types of publication, year, and length of observations. We could not pool the trypanosomosis prevalence in sheep and goats through meta-analysis due to small number of studies. The prevalence estimates based on the BCT ranged from 3.2 to 8.1% in goats and 2.8 to 10.6% in sheep. Even though there seems to be a slight decrease in trypanosomosis prevalence in cattle in one of the Gambian districts, there was no consistent trend across the years. It is thought that the literature search and formatting procedures presented in this study contribute to doing systematic reviews on the investigated subject and can be adapted for similar cases.


Subject(s)
Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Trypanosomiasis, African/veterinary , Trypanosomiasis, Bovine/epidemiology , Animals , Cattle , Cattle Diseases/parasitology , Gambia/epidemiology , Goat Diseases/parasitology , Goats , Prevalence , Sheep , Sheep Diseases/parasitology , Sheep, Domestic , Trypanosoma brucei brucei/physiology , Trypanosoma congolense/physiology , Trypanosoma vivax/physiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, Bovine/parasitology
6.
Parasit Vectors ; 12(1): 466, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31597558

ABSTRACT

BACKGROUND: Tsetse-transmitted trypanosomosis is a deadly, neglected tropical disease and a major challenge for mixed crop-livestock agriculture in sub-Saharan Africa. It is caused by several species of the genus Trypanosoma. Information on the occurrence of tsetse flies and African animal trypanosomosis (AAT) is available for different areas of Mali. However, these data have never been harmonized and centralized, which prevents the development of comprehensive epidemiological maps and constrains an evidence-based planning of control actions. To address this challenge, we created a dynamic geo-spatial database of tsetse and AAT distribution in Mali. METHODS: A digital repository containing epidemiological data collected between 2000 and 2018 was assembled. In addition to scientific publications, the repository includes field datasheets, technical reports and other grey literature. The data were verified, harmonized, georeferenced and integrated into a single spatially-explicit database. RESULTS: For the tsetse component, approximately 19,000 trapping records, corresponding to 6000 distinct trapping locations and 38,000 flies were included in the database. Glossina palpalis gambiensis was the most widespread and abundant species, and it was found in the southern, southern-central and western parts of the country. Glossina tachinoides was only found in the South. Only a few specimens of Glossina morsitans submorsitans were detected. For the AAT component, approximately 1000 survey records were included, corresponding to 450 distinct survey sites and 37,000 tested bovines. AAT was found in all surveyed regions, although data for the tsetse-free North and North-East are lacking. Trypanosoma vivax and Trypanosoma congolense were the dominant species, while Trypanosoma brucei infections were much less numerous. CONCLUSIONS: The atlas of tsetse and AAT in Mali provides a synoptic view of the vector and disease situation at the national level. Still, major geographical gaps affect the North, the North-East and the West, and there is also a severe lack of data over the past five years. Trypanosomosis remains a major animal health problem in Mali. However, despite its prevalence and distribution, monitoring and control activities are presently very limited. Efforts should be made to strengthen the progressive control of AAT in Mali, and the atlas provides a new tool to identify priority areas for intervention.


Subject(s)
Insect Vectors/classification , Trypanosomiasis, African/veterinary , Tsetse Flies/classification , Animals , Cattle , Databases, Factual , Female , Insect Vectors/parasitology , Male , Mali/epidemiology , Neglected Diseases/epidemiology , Neglected Diseases/parasitology , Neglected Diseases/veterinary , Prevalence , Trypanosoma brucei brucei/isolation & purification , Trypanosoma brucei brucei/physiology , Trypanosoma congolense/isolation & purification , Trypanosoma congolense/physiology , Trypanosoma vivax/isolation & purification , Trypanosoma vivax/physiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/transmission , Trypanosomiasis, Bovine/epidemiology , Trypanosomiasis, Bovine/transmission , Tsetse Flies/parasitology
7.
Curr Protoc Microbiol ; 53(1): e77, 2019 06.
Article in English | MEDLINE | ID: mdl-30707507

ABSTRACT

Trypanosoma congolense, together with T. vivax and T. brucei, causes African animal trypanosomiasis (AAT), or nagana, a livestock disease carried by bloodsucking tsetse flies in sub-Saharan Africa. These parasitic protists cycle between two hosts: mammal and tsetse fly. The environment offered by each host to the trypanosome is markedly different, and hence the metabolism of stages found in the mammal differs from that of insect stages. For research on new diagnostics and therapeutics, it is appropriate to use the mammalian life cycle stage, bloodstream forms. Insect stages such as procyclics are useful for studying differentiation and also serve as a convenient source of easily cultured, non-infective organisms. Here, we present protocols in current use in our laboratory for the in vitro culture of different life cycle stages of T. congolense-procyclics, epimastigotes, and bloodstream forms-together with methods for transfection enabling the organism to be genetically modified. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Cell Culture Techniques/methods , Cryopreservation/methods , Transfection/methods , Trypanosoma congolense/growth & development , Trypanosoma congolense/genetics , Animals , Cell Line , Humans , Life Cycle Stages , Trypanosoma congolense/physiology , Trypanosomiasis, African/parasitology , Tsetse Flies/parasitology
8.
Immunol Res ; 67(1): 84-92, 2019 02.
Article in English | MEDLINE | ID: mdl-30467677

ABSTRACT

Diminazene aceturate (Berenil) is the most commonly used trypanolytic agent in livestock. We previously showed that Berenil downregulates Trypanosoma congolense (T. congolense)-induced cytokine production in macrophages both in vitro and in vivo. Here, we investigated the molecular mechanisms through which the drug alters T. congolense-induced cytokine production in macrophages. We show that pretreatment of macrophages with Berenil significantly downregulated T. congolense-induced phosphorylation of mitogen-activated protein kinase (p38), signal transducer and activator of transcription (STAT) proteins including STAT1 and STAT3, and NFκB activity both in vitro and in vivo. Collectively, our results reveal a mechanistic insight through which Berenil downregulates T. congolense-induced cytokine production in macrophages by inhibiting key signaling molecules and pathways associated with proinflammatory cytokine production.


Subject(s)
Diminazene/analogs & derivatives , Macrophages/immunology , Trypanocidal Agents/therapeutic use , Trypanosoma congolense/physiology , Trypanosomiasis, African/drug therapy , Animals , Cattle , Cell Line, Transformed , Cytokines/metabolism , Diminazene/therapeutic use , Female , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Trypanosomiasis, African/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
9.
BMC Microbiol ; 18(Suppl 1): 142, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470175

ABSTRACT

BACKGROUND: Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cuticle and proliferate within the body of the host causing death in about 3-14 days depending on the concentration. During the infection process, EPF can reduce blood feeding abilities in hematophagous arthropods such as mosquitoes, tsetse flies and ticks, which may subsequently impact the development and transmission of parasites. Here, we report on the effects of infection of tsetse fly (Glossina fuscipes fuscipes) by the EPF, Metarhizium anisopliae ICIPE 30 wild-type strain (WT) and green fluorescent protein-transformed strain (GZP-1) on the ability of the flies to harbor and transmit the parasite, Trypanosoma congolense. RESULTS: Teneral flies were fed T. congolense-infected blood for 2 h and then infected using velvet carpet fabric impregnated with conidia covered inside a cylindrical plastic tube for 12 h. Control flies were fed with T. congolense-infected blood but not exposed to the fungal treatment via the carpet fabric inside a cylindrical plastic tube. Insects were dissected at 2, 3, 5 and 7 days post-fungal exposure and the density of parasites quantified. Parasite load decreased from 8.7 × 107 at day 2 to between 8.3 × 104 and 1.3 × 105 T. congolense ml- 1 at day 3 post-fungal exposure in fungus-treated (WT and GZP-1) fly groups. When T. congolense-infected flies were exposed to either fungal strain, they did not transmit the parasite to mice whereas control treatment flies remained capable of parasite transmission. Furthermore, M. anisopliae-inoculated flies which fed on T. congolense-infected mice were not able to acquire the parasites at 4 days post-fungal exposure while parasite acquisition was observed in the control treatment during the same period. CONCLUSIONS: Infection of the vector G. f. fuscipes by the entomopathogenic fungus M. anisopliae negatively affected the multiplication of the parasite T. congolense in the fly and reduced the vectorial capacity to acquire or transmit the parasite.


Subject(s)
Metarhizium/physiology , Trypanosoma congolense/physiology , Trypanosomiasis, African/transmission , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Africa , Animals , Antibiosis , Female , Insect Vectors/microbiology , Insect Vectors/parasitology , Male , Reproduction
10.
PLoS One ; 13(8): e0201461, 2018.
Article in English | MEDLINE | ID: mdl-30092050

ABSTRACT

The presented work explores the regulatory influence of upstream open reading frames (uORFs) on gene expression in Trypanosoma congolense. More than 31,000 uORFs in total were identified and characterized here. We found evidence for the uORFs' appearance in the transcriptome to be correlated with proteomic expression data, clearly indicating their repressive potential in T. congolense, which has to rely on post-transcriptional gene expression regulation due to its unique genomic organization. Our data show that uORF's translation repressive potential does not only correlate with elemental sequence features such as length, position and quantity, but involves more subtle components, in particular the codon and amino acid profiles. This corresponds with the popular mechanistic model of a ribosome shedding initiation factors during the translation of a uORF, which can prevent reinitiation at the downstream start codon of the actual protein-coding sequence, due to the former extensive consumption of crucial translation components. We suggest that uORFs with uncommon codon and amino acid usage can slow down the translation elongation process in T. congolense, systematically deplete the limited factors, and restrict downstream reinitiation, setting up a bottleneck for subsequent translation of the protein-coding sequence. Additionally we conclude that uORFs dynamically influence the T. congolense life cycle. We found evidence that transition to epimastigote form could be supported by gain of uORFs due to alternative trans-splicing, which down-regulate housekeeping genes' expression and render the trypanosome in a metabolically reduced state of endurance.


Subject(s)
5' Untranslated Regions/genetics , Life Cycle Stages/genetics , Open Reading Frames/genetics , RNA, Protozoan/genetics , Trypanosoma congolense/physiology , Alternative Splicing/physiology , Codon/genetics , Gene Expression Regulation/physiology , Genes, Protozoan/genetics , Peptide Chain Elongation, Translational/genetics , RNA, Protozoan/metabolism , Trans-Splicing/physiology
11.
Parasit Vectors ; 11(1): 380, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29970164

ABSTRACT

BACKGROUND: The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T. congolense's developmental program within tsetse are largely unknown due to considerable challenges with obtaining sufficient parasite cells to perform molecular studies. METHODS: In this study, we used RNA-seq to profile T. congolense gene expression during development in two distinct tsetse tissues, the cardia and proboscis. Indirect immunofluorescent antibody test (IFA) and confocal laser scanning microscope was used to localize the expression of a putative protein encoded by the hypothetical protein (TcIL3000_0_02370). RESULTS: Consistent with current knowledge, genes coding several variant surface glycoproteins (including metacyclic specific VSGs), and the surface coat protein, congolense epimastigote specific protein, were upregulated in parasites in the proboscis (PB-parasites). Additionally, our results indicate that parasites in tsetse's cardia (C-parasites) and PB employ oxidative phosphorylation and amino acid metabolism for energy. Several genes upregulated in C-parasites encoded receptor-type adenylate cyclases, surface carboxylate transporter family proteins (or PADs), transport proteins, RNA-binding proteins and procyclin isoforms. Gene ontology analysis of products of genes upregulated in C-parasites showed enrichment of terms broadly associated with nucleotides, microtubules, cell membrane and its components, cell signaling, quorum sensing and several transport activities, suggesting that the parasites colonizing the cardia may monitor their environment and regulate their density and movement in this tissue. Additionally, cell surface protein (CSP) encoding genes associated with the Fam50 'GARP', 'iii' and 'i' subfamilies were also significantly upregulated in C-parasites, suggesting that they are important for the long non-dividing trypomastigotes to colonize tsetse's cardia. The putative products of genes that were upregulated in PB-parasites were linked to nucleosomes, cytoplasm and membrane-bound organelles, which suggest that parasites in this niche undergo cell division in line with prior findings. Most of the CSPs upregulated in PB-parasites were hypothetical, thus requiring further functional characterization. Expression of one such hypothetical protein (TcIL3000_0_02370) was analyzed using immunofluorescence and confocal laser scanning microscopy, which together revealed preferential expression of this protein on the entire surface coat of T. congolense parasite stages that colonize G. m. morsitans' proboscis. CONCLUSION: Collectively, our results provide insight into T. congolense gene expression profiles in distinct niches within the tsetse vector. Our results show that the hypothetical protein TcIL3000_0_02370, is expressed on the entire surface of the trypanosomes inhabiting tsetse's proboscis. We discuss our results in terms of their relevance to disease transmission processes.


Subject(s)
Transcriptome , Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Tsetse Flies/parasitology , Africa South of the Sahara/epidemiology , Animals , Gene Expression Profiling , Insect Vectors/parasitology , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Sequence Analysis, RNA , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission
12.
Sci Rep ; 8(1): 9019, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29899344

ABSTRACT

Animal African trypanosomosis (AAT), a disease affecting livestock, is caused by parasites of the Trypanosoma genus (mainly T. vivax and T. congolense). AAT is widespread in Sub-Saharan Africa, where it continues to impose a heavy socio-economic burden as it renders development of sustainable livestock rearing very strenuous. Active case-finding and the identification of infected animals prior to initiation of drug treatment requires the availability of sensitive and specific diagnostic tests. In this paper, we describe the development of two heterologous sandwich assay formats (ELISA and LFA) for T. congolense detection through the use of Nanobodies (Nbs). The immunisation of an alpaca with a secretome mix from two T. congolense strains resulted in the identification of a Nb pair (Nb44/Nb42) that specifically targets the glycolytic enzyme pyruvate kinase. We demonstrate that the Nb44/Nb42 ELISA and LFA can be employed to detect parasitaemia in plasma samples from experimentally infected mice and cattle and, additionally, that they can serve as 'test-of-cure' tools. Altogether, the findings in this paper present the development and evaluation of the first Nb-based antigen detection LFA to identify active T. congolense infections.


Subject(s)
Immunoassay/methods , Single-Domain Antibodies/immunology , Trypanosoma congolense/immunology , Trypanosomiasis, African/immunology , Animals , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Cattle , Mice , Parasitemia/diagnosis , Parasitemia/immunology , Parasitemia/parasitology , Protozoan Proteins/immunology , Pyruvate Kinase/immunology , Sensitivity and Specificity , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Trypanosoma congolense/physiology , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology
13.
PLoS Pathog ; 14(5): e1007043, 2018 05.
Article in English | MEDLINE | ID: mdl-29772025

ABSTRACT

Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.


Subject(s)
Trypanosoma/growth & development , Trypanosoma/physiology , Animals , Cell Division/physiology , Culicidae/parasitology , Digestive System/microbiology , Disease Vectors , Flagella/metabolism , Flagella/physiology , Life Cycle Stages/physiology , Salivary Glands/parasitology , Trypanosoma/metabolism , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/pathogenicity , Trypanosoma brucei brucei/physiology , Trypanosoma congolense/growth & development , Trypanosoma congolense/pathogenicity , Trypanosoma congolense/physiology , Tsetse Flies/parasitology
14.
Insect Mol Biol ; 27(3): 414-428, 2018 06.
Article in English | MEDLINE | ID: mdl-29528164

ABSTRACT

Thioester-containing proteins (TEPs) are conserved proteins with a role in innate immune immunity. In the current study, we characterized the TEP family in the genome of six tsetse fly species (Glossina spp.). Tsetse flies are the biological vectors of several African trypanosomes, which cause sleeping sickness in humans or nagana in livestock. The analysis of the tsetse TEP sequences revealed information about their structure, evolutionary relationships and expression profiles under both normal and trypanosome infection conditions. Phylogenetic analysis of the family showed that tsetse flies harbour a genomic expansion of specific TEPs that are not found in other dipterans. We found a general expression of all TEP genes in the alimentary tract, mouthparts and salivary glands. Glossina morsitans and Glossina palpalis TEP genes display a tissue-specific expression pattern with some that are markedly up-regulated when the fly is infected with the trypanosome parasite. A different TEP response was observed to infection with Trypanosoma brucei compared to Trypanosoma congolense, indicating that the tsetse TEP response is trypanosome-specific. These findings are suggestive for the involvement of the TEP family in tsetse innate immunity, with a possible role in the control of the trypanosome parasite.


Subject(s)
Insect Proteins/genetics , Trypanosoma brucei brucei/physiology , Trypanosoma congolense/physiology , Tsetse Flies/genetics , Tsetse Flies/parasitology , Animals , Insect Proteins/classification , Insect Proteins/metabolism , Insect Vectors/genetics , Insect Vectors/parasitology , Male , Phylogeny , Trypanosomiasis, African
15.
Int J Parasitol Drugs Drug Resist ; 8(2): 159-164, 2018 08.
Article in English | MEDLINE | ID: mdl-29587237

ABSTRACT

Trypanosoma congolense is a protozoan parasite that is transmitted by tsetse flies, causing African Animal Trypanosomiasis, also known as Nagana, in sub-Saharan Africa. Nagana is a fatal disease of livestock that causes severe economic losses. Two drugs are available, diminazene and isometamidium, yet successful treatment is jeopardized by drug resistant T. congolense. Isothermal microcalorimetry is a highly sensitive tool that can be used to study growth of the extracellular T. congolense parasites or to study parasite growth inhibition after the addition of antitrypanosomal drugs. Time of drug action and time to kill can be quantified in a simple way by real time heat flow measurements. We established a robust protocol for the microcalorimetric studies of T. congolense and developed mathematical computations in R to calculate different parameters related to growth and the kinetics of drug action. We demonstrate the feasibility and benefit of the method exemplary with the two standard drugs, diminazene aceturate and isometamidium chloride. The method and the mathematical approach can be translated to study other pathogenic or non-pathogenic cells if they are metabolically active and grow under axenic conditions.


Subject(s)
Antiprotozoal Agents/pharmacology , Calorimetry/methods , Temperature , Trypanocidal Agents/pharmacology , Trypanosoma congolense/drug effects , Trypanosoma congolense/growth & development , Animals , Axenic Culture , Cattle , Computer Systems , Diminazene/analogs & derivatives , Diminazene/pharmacology , Drug Discovery , Drug Resistance , Models, Theoretical , Phenanthridines/pharmacology , Trypanosoma congolense/physiology , Trypanosomiasis, Bovine/diagnosis , Trypanosomiasis, Bovine/parasitology
16.
BMC Immunol ; 19(1): 2, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29301495

ABSTRACT

BACKGROUND: Weighted Gene Co-expression Network analysis, a powerful technique used to extract co-expressed gene pattern from mRNA expression data, was constructed to infer common immune strategies used by cattle in response to five different bacterial species (Escherichia coli, Mycobacterium avium, Mycobacterium bovis, Salmonella and Staphylococcus aureus) and a protozoa (Trypanosoma Congolense) using 604 publicly available gene expression microarrays from 12 cattle infection experiments. RESULTS: A total of 14,999 transcripts that were differentially expressed (DE) in at least three different infection experiments were consolidated into 15 modules that contained between 43 and 4441 transcripts. The high number of shared DE transcripts between the different types of infections indicated that there were potentially common immune strategies used in response to these infections. The number of transcripts in the identified modules varied in response to different infections. Fourteen modules showed a strong functional enrichment for specific GO/pathway terms related to "immune system process" (71%), "metabolic process" (71%), "growth and developmental process" (64%) and "signaling pathways" (50%), which demonstrated the close interconnection between these biological pathways in response to different infections. The largest module in the network had several over-represented GO/pathway terms related to different aspects of lipid metabolism and genes in this module were down-regulated for the most part during various infections. Significant negative correlations between this module's eigengene values, three immune related modules in the network, and close interconnection between their hub genes, might indicate the potential co-regulation of these modules during different infections in bovine. In addition, the potential function of 93 genes with no functional annotation was inferred based on neighbor analysis and functional uniformity among associated genes. Several hypothetical genes were differentially expressed during experimental infections, which might indicate their important role in cattle response to different infections. CONCLUSIONS: We identified several biological pathways involved in immune response to different infections in cattle. These findings provide rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on immune response to different infections in cattle.


Subject(s)
Cattle Diseases/genetics , Gene Expression Profiling , Gene Regulatory Networks , Signal Transduction/genetics , Animals , Cattle , Cattle Diseases/microbiology , Cattle Diseases/parasitology , Escherichia coli/physiology , Gene Ontology , Host-Pathogen Interactions , Mycobacterium avium/physiology , Mycobacterium bovis/physiology , Salmonella/physiology , Species Specificity , Staphylococcus aureus/physiology , Trypanosoma congolense/physiology
17.
Adv Parasitol ; 98: 283-309, 2017.
Article in English | MEDLINE | ID: mdl-28942771

ABSTRACT

The African trypanosomiases are diseases of humans and their livestock caused by trypanosomes carried by bloodsucking tsetse flies. Although the human pathogen Trypanosoma brucei is the best known, other trypanosome species are of greater concern for animal health in sub-Saharan Africa. In particular, Trypanosomacongolense is a major cattle pathogen, which is as amenable to laboratory culture as T. brucei, with the advantage that its whole life cycle can be recapitulated in vitro. Thus, besides being worthy of study in its own right, T. congolense could be useful as a model of trypanosome development. Here we review the biology of T. congolense, highlighting significant and intriguing differences from its sister, T. brucei. An up-to-date compilation of methods for cultivating and genetically manipulating T. congolense in the laboratory is provided, based on published work and current development of methods in our lab, as well as a description of available molecular resources.


Subject(s)
Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Tsetse Flies/parasitology , Animals , Cattle , Female , Humans , Life Cycle Stages , Livestock , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African
18.
Nat Microbiol ; 2(11): 1471-1479, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28871083

ABSTRACT

Quorum sensing (QS) is commonly used in microbial communities and some unicellular parasites to coordinate group behaviours 1,2 . An example is Trypanosoma brucei, which causes human African trypanosomiasis, as well as the livestock disease, nagana. Trypanosomes are spread by tsetse flies, their transmission being enabled by cell-cycle arrested 'stumpy forms' that are generated in a density-dependent manner in mammalian blood. QS is mediated through a small (<500 Da), non-proteinaceous, stable but unidentified 'stumpy induction factor' 3 , whose signal response pathway has been identified. Although QS is characterized in T. brucei, co-infections with other trypanosome species (Trypanosoma congolense and Trypanosoma vivax) are common in animals, generating the potential for interspecies interactions. Here, we show that T. congolense exhibits density-dependent growth control in vivo and conserves QS regulatory genes, of which one can complement a T. brucei QS signal-blind mutant to restore stumpy formation. Thereafter, we demonstrate that T. congolense-conditioned culture medium promotes T. brucei stumpy formation in vitro, which is dependent on the integrity of the QS signalling pathway. Finally, we show that, in vivo, co-infection with T. congolense accelerates differentiation to stumpy forms in T. brucei, which is also QS dependent. These cross-species interactions have important implications for trypanosome virulence, transmission, competition and evolution in the field.


Subject(s)
Quorum Sensing , Trypanosoma congolense/genetics , Trypanosoma congolense/physiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission , Animals , Cell Differentiation , Coinfection , Genes, Regulator , Humans , Loss of Function Mutation , Mice , Signal Transduction , Trypanosoma brucei brucei/pathogenicity , Trypanosoma brucei brucei/physiology , Trypanosoma congolense/growth & development , Trypanosoma congolense/pathogenicity , Trypanosoma vivax/pathogenicity , Trypanosoma vivax/physiology
19.
BMC Complement Altern Med ; 17(1): 275, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28535783

ABSTRACT

BACKGROUND: The search for alternative trypanocidal compounds which can be available at affordable price is of paramount importance for control of trypanosomosis in human and animals. The current study evaluates the in vivo activity of ethanolic stem bark extracts on Trypanosoma congolense and selected immunological components in an inbred Swiss albino mouse model. METHODS: Groups of mice infected with T. congolense were treated with the stem bark extracts at a rate of 1000 mg/kg, 1500 mg/kg, and 2000 mg/kg, twice a day in one set and thrice a day in another setting for three days consecutively. Negative (infected and untreated) and positive (infected treated with diminazene diaceturate at 3.5 mg/kg) control groups were used. Levels of parasitaemia were monitored daily for the first 10 days and thereafter 2-3 times per week to the end of experiment. In the other setting, uninfected mice, randomized in groups were treated with the extract but categorized as: thorough mixed extract (TME) and supernatant extract (SE) each at 500 mg/kg and 1500 mg/kg, in 8 hourly intervals respectively for three days consecutively. Control group was administered with phosphate buffered saline with glucose at 0.1 ml/10 g in a similar manner as for the extract. Whole blood and spleen were taken 24 h after the last treatment for hematological and histopathological analysis. RESULTS: The groups that received the extracts at 8 hourly intervals drastically reduced the parasitaemia. The higher dose of SE significantly reduced the percentage of lymphocytes (P < 0.05). Both high and low dose of TME significantly reduced lymphocytes percent (P < 0.05) while percent of neutrophils and monocytes increased significantly (P < 0.05). Histopathological changes of the spleen in the mice treated with higher concentrations of the extract of C. swynnertonii were suggestive of lymphocytes toxicity. CONCLUSION: The current study has provided evidence that, in vivo trypanocidal activity of ethanolic bark extracts of C. swynnertonii is probably affected by its negative effect on humoral mediated immune response. Further studies are recommended to determine its potential as an alternative source of lead compounds for trypanocidal drug discovery.


Subject(s)
Commiphora/chemistry , Plant Extracts/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosoma congolense/drug effects , Trypanosomiasis, African/drug therapy , Animals , Disease Models, Animal , Humans , Male , Mice , Phytotherapy , Plant Bark/chemistry , Plant Extracts/isolation & purification , Treatment Outcome , Trypanocidal Agents/isolation & purification , Trypanosoma congolense/physiology , Trypanosomiasis, African/parasitology
20.
J Insect Sci ; 142014.
Article in English | MEDLINE | ID: mdl-25527583

ABSTRACT

The establishment of infection with three Trypanosoma spp (Gruby) (Kinetoplastida: Trypanosomatidae), specifically Trypanosoma brucei brucei (Plimmer and Bradford), T. b. rhodesiense (Stephen and Fatham) and T. congolense (Broden) was evaluated in Glossina pallidipes (Austen) (Diptera: Glossinidae) that either harbored or were uninfected by the endosymbiont Sodalis glossinidius (Dale and Maudlin) (Enterobacteriales: Enterobacteriaceae). Temporal variation of co-infection with T. b. rhodesiense and S. glossinidius was also assessed. The results show that both S. glossinidius infection (χ(2)= 1.134, df = 2, P = 0.567) and trypanosome infection rate (χ(2)= 1.85, df = 2, P = 0.397) were comparable across the three infection groups. A significant association was observed between the presence of S. glossinidius and concurrent trypanosome infection with T. b. rhodesiense (P = 0.0009) and T. congolense (P = 0.0074) but not with T. b. brucei (P = 0.5491). The time-series experiment revealed a slight decrease in the incidence of S. glossinidius infection with increasing fly age, which may infer a fitness cost associated with Sodalis infection. The present findings contribute to research on the feasibility of S. glossinidius-based paratransgenic approaches in tsetse and trypanosomiasis control, in particular relating to G. pallidipes control.


Subject(s)
Enterobacteriaceae/physiology , Insect Vectors/microbiology , Insect Vectors/physiology , Trypanosoma/physiology , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Animals , Male , Species Specificity , Symbiosis , Trypanosoma brucei brucei/physiology , Trypanosoma brucei rhodesiense/physiology , Trypanosoma congolense/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...